We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

Back From the Future

A series of quantum experiments shows that measurements performed in the future can influence the present. Does that mean the universe has a destiny—and the laws of physics pull us inexorably toward our prewritten fate?

By Zeeya Merali
Aug 26, 2010 5:00 AMApr 18, 2023 2:54 PM

Newsletter

Sign up for our email newsletter for the latest science news
 

Jeff Tollaksen may well believe he was destined to be here at this point in time. We’re on a boat in the Atlantic, and it’s not a pleasant trip. The torrential rain obscures the otherwise majestic backdrop of the volcanic Azorean islands, and the choppy waters are causing the boat to lurch. The rough sea has little effect on Tollaksen, barely bringing color to his Nordic complexion. This is second nature to him; he grew up around boats. Everyone would agree that events in his past have prepared him for today’s excursion. But Tollaksen and his colleagues are investigating a far stranger possibility: It may be not only his past that has led him here today, but his future as well.

Tollaksen’s group is looking into the notion that time might flow backward, allowing the future to influence the past. By extension, the universe might have a destiny that reaches back and conspires with the past to bring the present into view. On a cosmic scale, this idea could help explain how life arose in the universe against tremendous odds. On a personal scale, it may make us question whether fate is pulling us forward and whether we have free will.

The boat trip has been organized as part of a conference sponsored by the Foundational Questions Institute to highlight some of the most controversial areas in physics. Tollaksen’s idea certainly meets that criterion. And yet, as crazy as it sounds, this notion of reverse causality is gaining ground. A succession of quantum experiments confirm its predictions—showing, bafflingly, that measurements performed in the future can influence results that happened before those measurements were ever made.

As the waves pound, it’s tough to decide what is more unsettling: the boat’s incessant rocking or the mounting evidence that the arrow of time—the flow that defines the essential narrative of our lives—may be not just an illusion but a lie.

Tollaksen, currently at Chapman University in Orange County, California, developed an early taste for quantum mechanics, the theory that governs the motion of particles in the subatomic world. He skipped his final year of high school, instead attending physics lectures by the charismatic Nobel laureate Richard Feynman at Caltech in Pasadena and learning of the paradoxes that still fascinate and frustrate physicists today.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.